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Recent advances in nonequilibrium statistical mechanics shed new light on the ratchet effect. The ratchet
motion can thus be understood in terms of symmetry �breaking� considerations. We introduce an additional
symmetry operation besides time reversal, that switches between two modes of operation. That mode reversal
combined with time reversal decomposes the nonequilibrium action so as to clarify under what circumstances
the ratchet current is a second order effect around equilibrium, what is the direction of the ratchet current, and
what are possibly the symmetries in its fluctuations.

DOI: 10.1103/PhysRevE.76.051117 PACS number�s�: 05.70.Ln, 05.40.�a

I. INTRODUCTION

Irreversible thermodynamics describes the appearance of
currents in macroscopic systems from specific nonequilib-
rium conditions. The notion of entropy production is central
and makes the product of forces and fluxes. The forces are
gradients of thermodynamic potentials, directly connected to
differences in concentration of particles or to variations in
temperature, etc. The fluxes relate to the transport of certain
quantities. Basic information about the direction of these cur-
rents follows from the second law of thermodynamics �posi-
tivity of entropy production� and their response and symme-
try properties are contained in the Green-Kubo and Onsager
relations. Even though there is not yet a systematic nonequi-
librium theory beyond first order around equilibrium, for
many practical purposes that is not really problematic.

The situation is quite different and in fact, worse, for
transport phenomena that arise as rectifications of fluctua-
tions such as in Brownian motors �1,2�. We will speak here
more generally about the ratchet effect. The very notion of
“ratchet effect” has not been uniquely defined in the litera-
ture, perhaps witnessing the absence of a unifying under-
standing. Yet, a few ideas are in common. It is, e.g., empha-
sized that ratchets are mesoscopic systems that provide
transport in spatially periodic media away from equilibrium,
that ratchets are driven by fluctuations, and that the direction
of transport cannot be inferred from thermodynamics �3�.

In the present paper we start from the idea that symmetry
breaking is central to the concept of ratchets. One is re-
minded of Curie’s principle that “phenomena that are not
ruled out by symmetries will generically happen.” By sym-
metry, a sphere immersed in a heat bath does not move.
When one makes the object asymmetric, the broken spatial
symmetry no longer inhibits directed motion. However, if the
heat bath is in equilibrium, the system still has unbroken
time-reversal symmetry �detailed balance� which prevents
motion. When finally also that time symmetry is lifted, for
example, by acting with a mixture of different baths at dif-
ferent temperature, then the object will move. At least in
principle, since on macroscopic scales the effect will in gen-
eral be blurred by high inertia; the energy scales associated

to the locomotion of the object have to be comparable with
the thermal fluctuations induced by the surroundings.

In what follows we contribute a framework for ratchet
effects, based on symmetries of the action in the path inte-
gral. Our main results are then as follows.

First, we clarify when and why the ratchet effect is second
order. In a sense, to be explained, the ratchet current is then
orthogonal to the entropy production. As we will specify, that
harmonizes well with the understanding that “the direction of
the ratchet current does not follow from the second law.”
Second, we make the connection with the recently studied
fluctuation theorem. The ratchet work is in general the sum
of three physical quantities that each satisfy a fluctuation
symmetry. Sometimes, but not always, the ratchet current
itself also satisfies a symmetry in its fluctuations. Finally, we
discuss how to infer the direction of the ratchet current. Of
course, for specific models sharper results are possibly avail-
able and the notions of ratchet work and of efficiency can
sometimes be discussed in much greater detail: see, e.g.,
�4,5�; in �6� one considers explicitly second order currents,
and fluctuations of the ratchet current have been studied in
�7�. We emphasize, however, that our work concerns general
methods and tools in describing the ratchet effect. From a
more fundamental perspective, it illustrates and exploits the
role of the time-symmetric term in the action governing the
space-time histories of a system. Our analysis therefore takes
part in the construction of nonequilibrium statistical mechan-
ics beyond the linear regime.

II. RATCHET ESSENTIALS

We start by explaining our particular point of view on
ratchet systems.

A. Fluctuations

Ratchet devices are best described on a microscopic or
mesoscopic scale where in the usual setup one considers sto-
chastic processes as specified from some master or kinetic
equation. We do not need a specific model equation �but we
will be giving examples below� and we assume that for the
appropriate scale of description the distribution of histories is
given after some transient time as weighted via some gener-
alized Onsager-Machlup Lagrangian L�,*christian.maes@fys.kuleuven.be
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Prob��� � e−L����P0��� = :P���� . �1�

We explain the notation. The �= ��t� are paths or histories of
the system over a certain time interval �0,T�, where at each
time t, �t describes the state of the device. The weights of �
are given in terms of the functional L�, called the action or
the Lagrangian, extensive in the duration T �not explicitly
indicated for simplicity of notation�. All quantities derived
from the Lagrangian L� are only defined modulo a temporal
boundary term, i.e., a difference of the form U��T�−U��0�,
and below, we often write equalities between functions of
paths �, which would be incorrect if we did not allow for
such a boundary correction.

In the case of small macroscopic fluctuations, the L� is
known as the Onsager-Machlup Lagrangian. More generally,
it is simply obtained by taking a path integral representation,
i.e., taking the logarithm of the path probabilities as from
discrete time approximations or from so called multigate
probabilities or from a Girsanov formula for Markov pro-
cesses, see, e.g., �8�.

The Lagrangian L� depends on a parameter � which rep-
resents a particular driving that will generate the ratchet cur-
rent. For �=0, the process P0 is a reference process; we
assume that all the nonequilibrium driving resides in L� so
that P0 is in fact a corresponding equilibrium process. Non-
equilibrium expectations are computed with the nonequilib-
rium path-space distribution �1�,

�f�� =� dP0���f���e−L����

for the normalized expectation of a function f��� in histories
�.

B. Modes of operation

A ratchet device can be considered as a motor that has
various pathways or channels to complete its working cycle,
available at different times or at different locations. No ex-
plicit thermodynamic force needs to be specified. In general,
the state of the ratchet is represented by two coordinates: x, a
one-dimensional cyclic coordinate which gives the position
of the motor, and k, mostly discrete and which specifies ad-
ditional information concerning the specific channel or mode
of operation. The coordinate k can be spatial �e.g., like in
Feynman’s ratchet and pawl�, it can determine the type of
environment �when the motor interacts with a gas consisting
of multiple species which are not in equilibrium with each
other�, it can specify the potential �like in a flashing ratchet�
or the value of some time-dependent external field. In some
cases, the different modes of operation could represent dif-
ferent energy levels of the system and the switching then
results from contact with a heat bath, cf. thermoelectric ef-
fects as in �9�. The possible values of k can mostly be asso-
ciated to the action of different reservoirs, spatially or tem-
porally. In the present paper we restrict ourselves to two
values for k and hence in particular no treatment will be
given involving a continuum of different heat baths such as,
for example, in the Büttiker ratchet realizing a space-
dependent temperature �10�. In summary, the paths � we

have in mind when writing Eq. �1� also include the informa-
tion of what temperature, or what potential, etc., is used �k
coordinate� at what time, and not only the position of the
motor itself �x coordinate�.

Since k takes two values, these channels can be divided in
a set of pairs, and we can usefully define a transformation
between the two members of the pair. To be specific, imagine
a Markov jump process for which the paths � correspond to
sequences xj ,kj of positions and modes, respectively, and of
jump times tj:

� = �x1,k1,t1;x2,k2,t2; . . . ;xn,kn� . �2�

The kj take the values 1, 2. We can now introduce a trans-
formed path

�� = �x1, k̄1,t1;x2, k̄2,t2; . . . ;xn, k̄n� ,

where k̄j =3−kj switches 1�2 for the mode of operation.
More generally and for each path � we can associate to it a
transformed path ��, obtained by switching k’s in each step
of the path and thus switching the modes of operation of the
motor without touching the trajectory of the particle itself.
We emphasize that the symmetry �, called mode reversal,
acts directly on path space as we include in the history the
setting of the driving or of the environment. E.g., � allows us
to exchange two different potentials or temperatures, etc.
One can have in mind that � is �effectively� a sign reversal
of the thermodynamic forces, e.g., �→−�. In the case of
devices with external periodical forcing, � corresponds to
shifting each path by one-half of the period of the external
force.

Besides mode reversal and as essential in all nonequilib-
rium systems one can also apply time reversal. One then
compares the weight of a trajectory � with that of its time-
reversal ��: ����t=�T−t. We restrict us to variables like par-
ticle positions, and we do not consider here variables that are
odd under kinematical time reversal �like velocities�. The
difference between the probabilities for � and �� measures
the irreversibility, as has been expressed in a number of fluc-
tuation relations over the last years, see �11� for a review.

It is the breaking of the � symmetry, combined with the
breaking of detailed balance, that generates the nonequilib-
rium ratchet effect. It generates a nonzero ratchet current Jr
measuring the cycling speed, at least when there are no fur-
ther symmetries that would forbid Jr�0. We now consider
the symmetry properties of the path-dependent ratchet cur-
rent Jr. In contrast with many situations close to equilibrium,
we need to introduce yet other considerations than strictly
related to entropy production or time reversal �breaking�.
Now comes the relevance of the symmetry operation �. We
say that Jr is a ratchet current �associated to the operation ��
if it satisfies both

Jr���� = Jr��� ,

Jr���� = − Jr��� . �3�

The first symmetry of Jr under � means that the ratchet cur-
rent simply counts the number of completed cycles �in the x
coordinate� no matter along what channel �choices of k co-
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ordinate� it was taken; as a current counting the steps of the
ratchet in � we naturally ask that Jr��� is antisymmetric
under time reversal �.

III. FIRST ORDER VS SECOND ORDER

We require that the equilibrium situation is � symmetric,

P0���� = P0��� �4�

which implies that in equilibrium �J�0=0 for all time-
antisymmetric observables J. The nonequilibrium driving
breaks the time symmetry and we let S�=S be the
�-antisymmetric part of the Lagrangian, i.e.,

S = L����� − L���� . �5�

It turns out that the variable S can be identified with the
path-dependent entropy production appropriate to the scale
of description �11,12�, always up to a total time difference.
Obviously, S����=−S���.

A. Orthogonality

For ratchets it is very useful to employ also the mode
reversal �, and to put � in the balance vs ��. To start we
also ask here that

S���� = − S��� �6�

which is straightforward in most concrete models �think,
e.g., of heat conduction where one exchanges the tempera-
tures of baths for a fixed history ��. Remark that the entropy
production S and the ratchet current Jr then behave differ-
ently under the symmetry �, but identically under the sym-
metry �.

Clearly, from the properties S�=−S , Jr�=Jr follows that
the mutual covariance between S and Jr equals zero,

� Q�d��Jr���S��� = 0, � Q�d��S��� = 0, �7�

for no matter what �-invariant distribution Q. The identity
�7� expresses an orthogonality or independence between the
variable entropy production and the ratchet current. It an-
nounces that the ratchet effect plays beyond irreversible ther-
modynamics and there arises, for example, the problem of
determining the direction of the ratchet current.

One can indeed learn something about the ratchet effect
by the usual perturbation theory around equilibrium. One
then expands the nonequilibrium state e−L�P0 around equi-
librium P0 to obtain, via Eqs. �4� and �5�,

�Jr�� =
1

2
�JrS��0 + O��2� . �8�

The consequence of Eq. �7� now appears. In many cases,
including almost all flashing ratchets, the equilibrium pro-
cess is invariant under �. Then we can take Q���=P0��� in
Eq. �7� and �JrS��0=0. As a result, from Eq. �8� we see that
the ratchet current vanishes in first order in �. The reason is
the invariance of the equilibrium process under � combined

with the antisymmetry of the entropy production S under �.
That appears to be the general mechanism when obtaining
ratchet effects only in second order around equilibrium. At
the same time, we see that first order ratchets appear when
the equilibrium state P0 is not � invariant; see �13� for a
simple example.

B. Ratchets with load

When one attaches a load to extract work from the ratchet
effect, the above description must be modified. Applying a
load is effectively coupling the ratchet current to the entropy
production. It is now no longer true that the entropy produc-
tion S is antisymmetric under � and the relation �6� no longer
holds. To further resolve the �anti�symmetries, we decom-
pose S� into

S� = S�
+ + S�

−,

where S�
+=S�

+� �S�
−=−S�

−�� is �anti�symmetric under �. As an
example, we can already think of a heat engine working
between inverse temperatures �1 and �2. The variable en-
tropy current is S=�1J1+�2J2 where Ji is the heat current
into reservoir i, while the delivered work equals −W=J1
+J2 �energy conservation�. Then,

S =
1

2
��1 − �2��J1 − J2� +

1

2
��1 + �2�W . �9�

We think of the exchange of heat baths as a mode reversal
and we can take ���1−�2. The first term in Eq. �9� is
antisymmetric under the exchange �1↔�2 and the second
term �containing the work W� is symmetric under �. Quite
generally, the term S+ turns out to be proportional to the
work done on the ratchet, as a function on path space. As-
suming that ratchet work is proportional to the number of
completed cycles �as can be checked quite often� we write
the work as S+=−fJr for a constant load f . As a consequence,
the linear term in Eq. �8� gets rewritten as

�Jr��,f =
1

2
�JrS�

−�0 −
1

2
f�JrJr�0 + O��2, f2� .

Again, the first term on the right �coupling heat dissipation
with the ratchet current� vanishes if the equilibrium state P0

is � invariant and the response of the ratchet current to the
load is in first order determined by a current-current autocor-
relation �the second term on the right�.

IV. EXAMPLES

Ratchets allow motion without the application of net ther-
modynamic forces. The difference between a ratchet and a
perpetuum mobile of the second kind arises from the non-
equilibrium condition. Depending on the specific nature of
the nonequilibrium one distinguishes different kinds of ratch-
ets. As a result the above notions are realized in a somewhat
different way for different ratchets �flashing ratchets, rocked
ratchets, Feynman ratchets, etc.�. Yet our presentation �and
examples below� are restricted to bimodal operations only
�two possible values of k� excluding therefore, e.g., Büttiker-
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Landauer ratchets �10�. To fix the ideas and to illustrate the
basic concepts, we consider here two classes of ratchet sys-
tems.

A. Two-temperature ratchet

A particle travels on a periodic landscape, modeled by a
double ring whose sites are indexed by �x ,k� with x
=0, . . . ,L and k=1,2. Site 0 is identified with L. An asym-
metric potential function V�x� is given. In each step the par-
ticle can either jump from �x ,k� to �x±1,k�, or it can change
its k coordinate while keeping x unchanged. One could have
in mind that the particle moves on the interface between two
gas reservoirs; whenever k=1, it interacts with reservoir 1
and analogously for k=2. The reservoirs have respective in-
verse temperatures �1,2. The dynamics is given by a Markov
jump process with jump rates

c„�x,k�,�y,k�… = gk�x,y�e−�k�V�y�−V�x��/2 �10�

for jumps from x to a nearest neighbor y=x±1 on the ring,
and

c„�x,k�,�x,k��… = c„�x,k��,�x,k�… = h�x� �11�

for a change of k→k�. In going from �x ,k� to �y ,k�, the
particle absorbs energy V�y�−V�x� from reservoir k. We de-
mand that gk�x ,y�=gk�y ,x� and the symmetry �11� to assure
that the only source of entropy creation in the jump is by the
transfer of heat V�y�−V�x� �see also the first paragraph of
Sec. III�. The functions gk�x ,y� can, for example, include
details about the chemical potential of the reservoir, or more
generally, about the contact between the reservoir and the
particle. We remark that an eventual chemical potential does
not cause any entropy production since no gas particles are
being transported between the two reservoirs.

The driving � can then be identified with the difference
between the two reservoirs, say in terms of �1−�2 and
g1�x ,y�−g2�x ,y�. We hence make the assumption that
g1�x ,y�=g2�x ,y� when �1=�2, corresponding to equilibrium.
The paths � correspond to sequences of positions xj ,kj and
of jump times tj:

� = �x1,k1,t1;x2,k2,t2; . . . ;xn,kn� �12�

as in Eq. �12�. Time reversal � �for some large T� transforms
the path � into ��= �xn ,kn ,T− tn−1 ,kn−1 ; . . . ;x2 ,k2 ,T
− t1 ;x1 ,k1�. The mode reversal � exchanges the reservoirs
and it works on the kj’s exchanging k=1,2 The two reser-
voirs are identical in the equilibrium process ��=0⇒�1

=�2 ,g1�x ,y�=g2�x ,y��.
The antisymmetric term �5� under time reversal in the

Lagrangian can be obtained from computing

S��� = ln
P���
P����

= ln
c„�x1,k1�,�x2,k2�… ¯ c„�xn−1,kn−1�,�xn,kn�…
c„�xn,kn�,�xn−1,kn−1�… ¯ c„�x2,k2�,�x1,k1�…

or

S��� = 	
j=1

n−1

�kj
�V�xj+1� − V�xj�� �13�

which is the sum of changes in the entropy of the gases �note
that the jumps where the k coordinate changes do not enter
S����. The particle itself is thought of as microscopic and not
contributing to the entropy, so that Eq. �13� is the path-
dependent entropy production.

Clearly, S is antisymmetric under time reversal. There is
another way of writing Eq. �13� to make clear that S is also
antisymmetric under �:

S��� = − �1 	
j:kj=1

�V�xj+1� − V�xj�� − �2 	
j:kj=2

�V�xj+1� − V�xj��

= − ��1 − �2� 	
j:kj=1

�V�xj+1� − V�xj�� − �2�V�xn� − V�x1��

= − ��1 − �2� 	
j:kj=1

�V�xj+1� − V�xj�� . �14�

The last equality illustrates our convention that all path-
dependent quantities are written modulo a total time differ-
ence.

Clearly, the ratchet current Jr��� is a function of �̃
= �x1 , t1 ; . . . ;xn� only and it does not depend on the kj’s. Its
mean �Jr� is generically nonzero when V is asymmetric �and
no other accidental symmetries are present�. The ratchet is
second order �this is due to our assumption that g1�x ,y�
=g2�x ,y� when �1=�2�; the entropy production �13� is not of
the form FJr.

B. Flashing ratchet

In the previous example, it was the environment �and spe-
cifically the temperature� that was effectively changing be-
tween two possible values. We can also take the time depen-
dence in the shape of the potential. As another difference we
consider now a Langevin setup. Again it concerns a second
order ratchet.

Consider a particle in a spatially periodic landscape with
the potential flashing between two potential functions V+1
and V−1, both periodic functions V±1�x�=V±1�x+L�. Again,
one has to eliminate additional symmetries, like mirror sym-
metry of the potentials or supersymmetry �2�, to get a non-
zero ratchet current.

The nonequilibrium parameter � measures the difference
between the two potentials parametrized as V±1=V±�W. The
particle is in contact with a heat bath at inverse temperature
�. We model its motion by the overdamped Langevin equa-
tion

ẋt = − Vk�t�� �xt� + �t, �15�

where �t is a fluctuating Gaussian force with white noise
statistics: ��t�=0 and ��s�t�=2�−1	�t−s�. The time depen-
dence kt= ±1 is arbitrary. The reference process has �=0,
meaning that the potential is fixed equal to V. Under Itô
convention, one shows
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L� =
�

2

�� dxtktW��xt� + �� dtktV��xt�W��xt�

+
�2

2
� dtW�2�xt�� . �16�

The paths are given as �t= �xt ,kt� with time reversal imple-
mented by �for some large T� ��xt ,kt�= �xT−t ,kT−t� and

S = L�� − L� = − ��� dtk̇tW�xt� �17�

which is � times the dissipated power through the external
forcing. The mode reversal � switches potentials, ��xt ,kt�
= �xt ,−kt� and one observes that S�=−S.

V. RATCHET FLUCTUATIONS

The two symmetry operations � and � suggest a natural
decomposition of the Lagrangian L�. From now on we as-
sume that ��=�� �commutativity �23��. We write

R = R� = �L��� + L�� − L�� − L��/2 �18�

for the part that is antisymmetric under � and is symmetric
under �. The Lagrangian has the form

L� = L�
+ −

1

2
�R� + S�� , �19�

where L�
+ is �� ,�� invariant.

One can now verify that ratchet models typically satisfy
various fluctuation theorems. In brief, when P0 is �� ,�� in-
variant, then for all the three choices V=S ,R+S+ ,R+S−,

P��V = v�
P��V = − v�

= ev. �20�

For V=S, Eq. �20� is similar to the Gallavotti-Cohen fluctua-
tion symmetry for the fluctuations of the entropy production
�14,15�; for V=R+S+, Eq. �20� has been derived in �16�;
finally, Eq. �20� also holds for V=R+S−. The reason why in
all these cases one finds that fluctuation relation is that S,
R+S−, and R+S+ are the antisymmetric parts in the Lagrang-
ian L� under respectively the symmetries � ,� and ��. The
relation �20� can in each of the three cases be directly veri-
fied from computing the ratio P���� /P��Y�� for transforma-
tions Y =� ,� ,�� in Eq. �1�, and from combining that with
the decomposition �19�. In order to control temporal bound-
ary terms, it is assumed that the system itself has a bounded
state space; otherwise, some extended fluctuation symmetry
can be expected, see �17,18�.

Observe also that the ratchet work S+= �S+ �R+S+�− �R
+S−�� /2 is a sum of three observables, each of which satis-
fies a fluctuation theorem �20�.

A natural question is whether the ratchet current Jr itself
satisfies a fluctuation symmetry. In general, the answer seems
to be negative, but nevertheless it is possible to construct
classes of ratchets where that symmetry is verified, as is also
remarked for some specific models in �19,20�, and as now
will be shown.

We come back to the two-temperature ratchet of Sec.
IV A. We consider the limiting case of a very rapid changing
of the reservoir �k coordinate�, hence the limit h�x�↑ +
 in
Eq. �11�. In that limit, we obtain effectively a mixture of the
two reservoirs. Another possible realization is obtained by
thinking of the particle as a rigid body extended and con-
nected at its ends to two different reservoirs. Then, we have
a simple model of the Feynman-Smoluchowski ratchet much
in the spirit of �21� but in the overdamped limit. The two
modes of operation still correspond to the two reservoirs but
with respect to Eq. �12�, we make now a more coarse grained
description: we only look at the particle jumps �forgetting
about which reservoir caused it�, i.e., the jump rates are now
between x and y and they are given by the sum c�x ,y�
=c(�x ,1� , �y ,1�)+c(�x ,2� , �y ,2�). In other words, we collect
several of the original paths � of Eq. �12� into one and the
same new path �̃= �x1 , t1 ;x2 , t2 ; . . . ;xn�. Obviously now the
� symmetry has left the stage and there is effectively only
one possible channel �though of course, if one wants to keep
track of the physical entropy production, one still has to dis-
tinguish which reservoir “caused” what transition�. The cor-
responding path space distribution is

P̃��̃� = 	
�→�̃

P����, P̃��̃� � e−L̃��̃� �21�

with a new Lagrangian L̃. The key observation is that path-

wise, its antisymmetric component L̃���̃�− L̃��̃� is propor-
tional to the ratchet current

L̃� − L̃ = aJr �22�

with a constant a that can be computed explicitly. More spe-
cifically, from Eq. �10� we have arrived at a Markov process
with rates

c�x,y� = 	
k=1

2

gke
−�k�V�y�−V�x��/2,

where we take the prefactors gk independent of the position.
To compute Eq. �22� we must make the ratio of the prob-
abilities of �̃ and ��̃ and we concentrate on the jump times
in which the particle moves either forward or backward with
one step. The ratchet current Jr��̃� is the net number of steps
forward in time span T and is a sum over all the jump times
of +1, respectively −1, as the jump carries forward, respec-
tively backward. Obviously, each time the particle has com-
pleted one cycle, say, in the positive direction, each bond has
carried exactly one net jump forward. Therefore Eq. �22� is

ln
P̃��̃�

P̃���̃�
= aJr��̃� + o�T�

for

a =
1

L + 1	
x=0

L

ln
	k=1

2
gke

−�k�V�x+1�−V�x��/2

	k=1

2
gke

−�k�V�x�−V�x+1��/2
.

By standard arguments it now follows that for j�T
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P��Jr = j�
P��Jr = − j�

= eaj �23�

as T↑ +
, which is a fluctuation symmetry for the ratchet
current. In particular a�Jr���0, which obviously determines
the sign of the ratchet current.

Note that in this limit, there is a new accidental symmetry
possible; if g1�x ,y�=g2�x ,y� for some nonzero �, then one
easily checks that c�x ,y� /c�y ,x�=eA�y�−A�x� for some function
A. This “effective” detailed balance condition immediately
implies Jr=0. The same kind of symmetry can be seen in the
ratchet �21� if one models the contact with the thermal baths
by Langevin forces �instead of a Boltzmann equation, as in
done in �21��.

VI. DIRECTION OF RATCHET CURRENTS

In first-order ratchets, one can interpret Eq. �8� as a prin-
ciple for determining the direction of the ratchet current
close to equilibrium, providing a simple mathematical expla-
nation of the ideas in �22�. Indeed, since P0�Jr�0�=P0�Jr

0�, we can evenly split

�JrS��0 = 1/2�JrS��Jr � 0�0 + 1/2�JrS��Jr  0�0. �24�

Combine that with the fact that �S��0=0 to conclude that if
the entropy production S� is overwhelmingly positive in one
of the two subensembles Jr�0 or Jr0, then the ratchet
current has the sign as in that subensemble.

For more general ratchets, one can use the consequences
of the fluctuation theorems �20�. It implies that S, R+S+, and
R+S− are all positive with a probability that exponentially
approaches 1 as the duration T↑
. In principle, that deter-
mines the direction of the ratchet current.

To be more specific, we consider unloaded ratchets for
which the first order around equilibrium vanishes, see the
discussion around Eq. �8�. Then, the first nonvanishing order
is given by

�Jr�� =
1

4
�JrS�R��0 + O��3� . �25�

Hence one has to study the sign of S�R� in the two equilib-
rium subensembles Jr�0 and Jr0. Typical trajectories are
characterized by having positive entropy production S��0.
Yet, that does not yet fix the direction of the ratchet current
in the case of second order. The time-symmetric term R�

must, however, also be positive for typical paths. That selects
within the class of paths where S��0 what the direction of
the current will be.

VII. CONCLUSIONS

Fluctuations are driving the ratchet effect. It is therefore
important to investigate the structure of the action in the path
integral governing the path probabilities. Another symmetry
transformation � �mode reversal� appears that together with
time reversal decomposes the nonequilibrium action. The
term in the Lagrangian action that is symmetric under time
reversal but is antisymmetric under mode reversal contrib-
utes significantly to determining the direction and the nature
of the fluctuations of the ratchet current. That effect is most
outspoken for second order ratchets.
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